Seventh Semester B.E. Degree Examination, Feb./Mar. 2022 Image Processing

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART – A

- What is Digital Image Processing and explain fundamental steps in Digital image processing 1 a. with neat block diagram. (12 Marks)
 - Explain brightness adaptation and discrimination with suitable diagram. b. (05 Marks)
 - Explain any one application of Digital Image Processing.

(03 Marks)

- Explain with neat diagram Single Image Sensor and Sensor Strips. 2 a. (08 Marks)
 - Define Image Sampling and Quantisation. Also mention any 3 methods of Image Zooming. b. (05 Marks)
 - Consider the image segment given in Table Q2(c). Let $V = \{2, 3, 4\}$ compute the lengths of shortest 4, 8 and m path between 'P' and 'Q'. If path does not explain why it is not existing. Also find: i) Euclidean ii) City – block iii) Chess – board distances.

(07 Marks)

- Explain with suitable equations the 3
 - Energy conservation
 - ii) Energy compaction and variance of transform coefficients properties of unitary transforms. (08 Marks)
 - Prove that the DFT of two dimensional circular convolution of two arrays is the product of their DFTs. (06 Marks)
 - Compute the 2D-DFT of the 4×4 gray scale image given below:

(06 Marks)

- Write defining equations for Discrete cosine transform and write any four properties for the (06 Marks)
 - Generate Haar basis for N = 2. b.

(10 Marks)

List any 4 properties of slant transform.

(04 Marks)

PART - B

- 5 a. Explain:
 - i) Contrast stretching
 - ii) Gray level slicing
 - iii) Bit-plane slicing
 - iv) High boost filtering.

(08 Marks)

b. Perform histogram equalization for the image

4	4	4	4	4
3	4	5	4	3
4 3 3 3 4	5	5	5	3 3 3
3	4	5	4	3
4	4	4	4	4

(12 Marks)

- 6 a. Explain Homomorphic filtering approach for Image Enhancement. (10 Marks)
 - b. Explain five important noise probability functions with suitable equations. (10 Marks)
- 7 a. Draw and explain Image degradation and restoration model. (08 Marks)
 - b. Discuss various mean filters used in Image Restoration system. (08 Marks)
 - c. Explain Inverse filtering approach and its limitations.

(04 Marks)

8 a. Discus briefly on RGB and HSI colour model.

(08 Marks)

b. What is Pseudo color processing and explain Intensity slicing method.

(08 Marks)

c. Given (RGB) = (0.683, 0.1608, 0.1922). Find Intensity and saturation in HSI model.

(04 Marks)